預設模板
1
2
3
4
5
6
7
8
9
10
11
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define fi first
#define se second
#define INF LONG_LONG_MAX/1000
#define WA() ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL)
#define all(x) (x).begin(), (x).end()
#define int long long
#define PII pair<int, int>2D Prefix Sum
1
2
3
4
5
6
7
8
9
10
11
int row, col;
while (cin >> row >> col) {
vector<vector<int>> v(row+1, vector<int>(col+1));
for (int i = 1, tmp; i <= row; i++) for (int j = 1; j <= col; j++) {
cin >> v[i][j];
v[i][j] += v[i-1][j] - v[i-1][j-1] + v[i][j-1];
}
int sx, sy, ex, ey;
cin >> sx >> sy >> ex >> ey;
cout << v[ex][ey]-v[ex][sy-1]-v[sx-1][ey]+v[sx-1][sy-1] << '\n';
}Union-Find
1
2
3
4
5
6
7
8
9
10
11
vector<int> par(N), sz(N, 1); // N 為節點總數
int Find(int x) { return par[x] == x ? x : par[x] = Find(par[x]); }
void Union(int x, int y) {
x = Find(x); y = Find(y);
if (x == y) return;
if (sz[x] < sz[y]) swap(x, y);
par[y] = x; sz[x] += sz[y]; sz[y] = 0;
}
int getSize(int x) { return sz[Find(x)]; }
// iota(all(par), 0);BIT (Fenwick Tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
vector<int> v, bit;
int n;
void add(int x, int val) { for (; x <= n; x += x&-x) bit[x] += val; }
int query(int x) {
int sum = 0;
for (; x > 0; x -= x&-x) sum += bit[x];
return sum;
}
int main() {
int a, b; cin >> n >> a >> b;
v.resize(n);
for (auto &i : v) cin >> i;
bit.assign(n+1, 0);
for (int i = 0; i< n; i++) add(i+1, v[i]);
cout << query(b) - query(a-1);
}線段樹
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
struct SegmentTree {
int n;
vector<int> sumTree, mxTree, mnTree, lazy;
// 初始化
SegmentTree(int _n): n(_n) {
sumTree.assign(4*n, 0);
mxTree.assign(4*n, LLONG_MIN/2);
mnTree.assign(4*n, LLONG_MAX/2);
lazy.assign(4*n, 0);
}
// 建樹
void build(int idx, int l, int r, const vector<int>& v) {
if (l == r) {
sumTree[idx] = mxTree[idx] = mnTree[idx] = v[l];
return;
}
int m = (l + r) >> 1;
build(idx<<1, l, m, v);
build(idx<<1|1, m+1, r, v);
pull(idx);
}
// 合併
void pull(int idx) {
sumTree[idx] = sumTree[idx<<1] + sumTree[idx<<1|1];
mxTree[idx] = max(mxTree[idx<<1], mxTree[idx<<1|1]);
mnTree[idx] = min(mnTree[idx<<1], mnTree[idx<<1|1]);
}
// 下傳懶標記
void push(int idx, int l, int r) {
if (!lazy[idx]) return;
int m = (l + r) >> 1;
apply(idx<<1, l, m, lazy[idx]);
apply(idx<<1|1, m+1, r, lazy[idx]);
lazy[idx] = 0;
}
// 套用標記到節點
void apply(int idx, int l, int r, int val) {
sumTree[idx] += val * (r - l + 1);
mxTree[idx] += val;
mnTree[idx] += val;
lazy[idx] += val;
}
// 區間加值更新 [L, R]
void update(int idx, int l, int r, int L, int R, int val) {
if (L <= l && r <= R) {
apply(idx, l, r, val);
return;
}
push(idx, l, r);
int m = (l + r) >> 1;
if (L <= m) update(idx<<1, l, m, L, R, val);
if (R > m) update(idx<<1|1, m+1, r, L, R, val);
pull(idx);
}
// 區間總和查詢 [L, R]
int querySum(int idx, int l, int r, int L, int R) {
if (L <= l && r <= R) return sumTree[idx];
push(idx, l, r);
int m = (l + r) >> 1;
int res = 0;
if (L <= m) res += querySum(idx<<1, l, m, L, R);
if (R > m) res += querySum(idx<<1|1, m+1, r, L, R);
return res;
}
// 區間最大值查詢 [L, R]
int queryMax(int idx, int l, int r, int L, int R) {
if (L <= l && r <= R) return mxTree[idx];
push(idx, l, r);
int m = (l + r) >> 1;
int res = LLONG_MIN/2;
if (L <= m) res = max(res, queryMax(idx<<1, l, m, L, R));
if (R > m) res = max(res, queryMax(idx<<1|1, m+1, r, L, R));
return res;
}
// 區間最小值查詢 [L, R]
int queryMin(int idx, int l, int r, int L, int R) {
if (L <= l && r <= R) return mnTree[idx];
push(idx, l, r);
int m = (l + r) >> 1;
int res = LLONG_MAX/2;
if (L <= m) res = min(res, queryMin(idx<<1, l, m, L, R));
if (R > m) res = min(res, queryMin(idx<<1|1, m+1, r, L, R));
return res;
}
};
signed main() { WA();
int n, q; cin >> n >> q;
vector<int> v(n+1);
for (int i = 1; i <= n; i++) cin >> v[i];
SegmentTree st(n);
st.build(1, 1, n, v);
while (q--) {
int type, a, b, k;
cin >> type >> a >> b;
if (type == 1) { // 區間加值
cin >> k;
st.update(1, 1, n, a, b, k);
}
else if (type == 2) cout << st.querySum(1, 1, n, a, b) << '\n';
else if (type == 3) cout << st.queryMax(1, 1, n, a, b) << '\n';
else if (type == 4) cout << st.queryMin(1, 1, n, a, b) << '\n';
}
}String
KMP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
vector<int> build_lps(const string &s) {
int n = s.size();
vector<int> lps(n);
lps[0] = 0;
for (int i = 1, len = 0; i < n; ) {
if (s[i] == s[len]) lps[i++] = ++len;
else if (len) len = lps[len-1];
else lps[i++] = 0;
}
return lps;
}
int kmp_search(string &text, string &pattern) {
auto lps = build_lps(pattern);
int i = 0, j = 0;
while (i < text.size()) {
if (text[i] == pattern[j]) {
i++; j++;
if (j == pattern.size()) return i - j; // match at i-j
}
else if (j) j = lps[j-1];
else i++;
}
return -1; // not found
}Trie
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
struct Node {
unordered_map<char, Node*> child;
bool isWord = false;
};
void insert(Node *p, string s) {
for (auto c : s) {
if (!p -> child[c]) p -> child[c] = new Node;
p = p -> child[c];
}
p -> isWord = true;
}
bool search(Node *p, string s) {
for (auto c : s) {
if (p -> child[c]) p = p -> child[c];
else return false;
}
return p -> isWord;
}
Node *remove(Node *root, string s, int depth = 0) {
if (!root) return nullptr;
if (depth == s.size()) {
if (root -> isWord) root -> isWord = false;
if (root -> child.empty()) {
delete root;
root = nullptr;
}
return root;
}
char c = s[depth];
if (root -> child[c]) {
root -> child[c] = remove(root -> child[c], s, depth + 1);
if (root -> child.empty() && !root -> isWord) {
delete root;
root = nullptr;
}
return root;
}
return root;
}
int main() { WA();
int t;
for (cin >> t; t; t--) {
int n;
Node *root = new Node;
cin >> n;
vector<string> v(n);
for (auto &i : v) cin >> i;
for (auto i : v) insert(root, i);
}
}Graph
Dijkstra
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
int main() {
int n, m; cin >> n >> m; // 節點數、邊數
vector<int> v(n), dis(n, INF);
vector<vector<PII>> g(n);
for (auto &i : v) cin >> i;
while (m--) {
int a, b, w;
cin >> a >> b >> w;
a--; b--;
g[a].pb({b, w}); g[b].pb({a, w});
}
priority_queue<PII, vector<PII>, greater<PII>> pq;
dis[0] = v[0]; pq.push({v[0], 0}); // 0 為起點
while (!pq.empty()) {
auto [d, node] = pq.top(); pq.pop();
if (d > dis[node]) continue;
for (auto &[to_idx, to_dis] : g[node])
if (dis[node] + to_dis < dis[to_idx]) {
dis[to_idx] = dis[node] + to_dis;
pq.push({dis[to_idx], to_idx});
}
}
for (int i = 1; i < n; i++) {
if (dis[i] == INF) cout << "-1 ";
else cout << dis[i] << ' ';
}
}Kruskal
1
2
3
4
5
6
7
8
9
10
11
12
13
vector<int> anc;
int Find(int x) { return (anc[x] == x ? x : anc[x] = Find(anc[x])); }
bool Union(int a, int b) {
int fa = Find(a), fb = Find(b);
if (fa > fb) swap(fa, fb);
if (fa == fb) return false;
return anc[fb] = fa, true;
}
anc.resize(n);
iota(all(anc), 0);
g.pb({w, a, b});
sort(all(g));
for (auto &[w, a, b] : g) if (Union(a, b)) ans += w;Topological-Sorting
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
int main() {
int n, m, a, b;
while (cin >> n >> m) {
vector<vector<int>> v(n);
vector<int> w(n), ans;
while (m--) {
cin >> a >> b;
v[--a].pb(--b); w[b]++;
}
queue<int> q;
for (int i = 0; i < n; i++) if (!w[i]) q.push(i);
while (q.size()) {
cout << q.front()+1 << ' ';
for (auto i : v[q.front()]) if (!(--w[i])) q.push(i);
q.pop();
}
cout << '\n';
}
}LCA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
vector<vector<int>> v, par;
vector<int> dep;
void dfs(int x, int u) {
par[0][x] = u;
for (auto &i : v[x]) {
if (i == u) continue;
dep[i] = dep[x]+1; dfs(i, x);
}
}
int lca(int a, int b) {
if (dep[a] < dep[b]) swap(a, b);
for (int i = 19; i >= 0; i--) if (dep[par[i][a]] >= dep[b]) a = par[i][a];
if (a == b) return a;
for (int i = 19; i >= 0; i--) if (par[i][a] != par[i][b])
a = par[i][a], b = par[i][b];
return par[0][a];
}
signed main() { WA();
int n, q; cin >> n >> q;
v.resize(n+1);
for (int i = 2; i <= n; i++) {
int k; cin >> k;
v[i].pb(k); v[k].pb(i);
}
par.resize(20, vector<int>(n+1));
dep.resize(n+1);
dfs(1, 1); // 從根結點開始建深度表
for (int i = 1; i < 20; i++) for (int j = 1; j <= n; j++)
par[i][j] = par[i-1][par[i-1][j]];
while (q--) {
int a, b; cin >> a >> b;
cout << lca(a, b) << '\n';
}
}Maximum Flow (Edmonds-Karp)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
int n, s, e, t, a, b, w;
vector<vector<int>> g;
vector<int> vis, par;
bool BFS() {
queue<int> q;
vis.assign(n+1, 0); par.assign(n+1, 0);
q.push(s); vis[s] = 1;
while (q.size()) {
int now = q.front(); q.pop();
if (now == e) return true;
for (int i = 1; i <= n; i++) if (g[now][i] && !vis[i]) {
vis[i] = 1; par[i] = now; q.push(i);
}
} return false;
}
signed main() { WA();
int c = 0;
while (cin >> n, n) {
g.assign(n+1, vector<int>(n+1, 0));
cin >> s >> e >> t;
while (t--) {
cin >> a >> b >> w;
g[a][b] += w; g[b][a] += w;
}
int ans = 0;
while (BFS()) {
int now = e, mnF = INF;
while (now != s) {
mnF = min(mnF, g[par[now]][now]);
now = par[now];
}
now = e;
while (now != s) {
g[par[now]][now] -= mnF;
g[now][par[now]] += mnF;
now = par[now];
}
ans += mnF;
}
cout << ans;
}
}Number
ext_euc
1
2
3
4
5
void ext_euc(int a, int b, int &x, int &y) {
if (!b) return void(x = 1, y = 0);
ext_euc(b, a%b, y, x);
y -= a/b*x;
}binpow
1
2
3
4
5
6
7
8
9
#define int long long
int f(int x, int y) {
int sum = 1;
for (; y; y >>= 1) {
if (y&1) sum *= x;
x *= x;
}
return sum;
}矩陣乘法
1
2
3
4
5
6
7
8
9
#define vvi vector<vector<int>>
vvi MaT(vvi a, vvi b) {
vvi c(a.size(), vector<int>(b[0].size()));
for (int i = 0; i < a.size(); i++)
for (int j = 0; j < b[0].size(); j++)
for (int k = 0; k < b.size(); k++)
c[i][j] += a[i][k] * b[k][j] % p;
return c;
}Prime Sieve
1
2
3
4
5
6
7
8
9
10
11
12
13
#define MAXN 1000000
int main() {
vector<int> p(MAXN, 1), ps;
p[0] = p[1] = 0;
for (int i = 2; i < MAXN; i++) {
if (p[i]) ps.pb(i);
for (auto j : ps) {
if (i*j >= p.size()) break;
p[i*j] = 0;
if (!(i%j)) break;
}
}
}DP
01/Unbounded knapsack
1
2
3
4
5
6
7
8
9
10
int N, W;
vector<int> wt(N), val(N);
vector<int> dp(W+1, 0);
for (int i = 0; i < N; i++) {
for (int w = W; w >= wt[i]; w--) // 01,每種物品只能拿一次
dp[w] = max(dp[w], dp[w - wt[i]] + val[i]);
for (int w = wt[i]; w <= W; w++) // Unbounded,每種物品可重複拿任意多次
dp[w] = max(dp[w], dp[w - wt[i]] + val[i]);
}
cout << dp[W];多重背包
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
int N, W; // 每種物品最多 cnt[i] 件
vector<int> wt(N), val(N), cnt(N);
vector<int> dp(W+1, 0);
for (int i = 0; i < N; i++) { // 將每個物品拆成若干件 1,2,4,..., 剩餘
int k = 1, c = cnt[i];
while (k < c) { // 處理 k 件
for (int w = W; w >= k * wt[i]; w--)
dp[w] = max(dp[w], dp[w - k * wt[i]] + k * val[i]);
c -= k; k <<= 1;
}
if (c > 0) for (int w = W; w >= c * wt[i]; w--) // 處理剩餘 c 件
dp[w] = max(dp[w], dp[w - c * wt[i]] + c * val[i]);
}
cout << dp[W];稀疏圖:邊較少
稠密圖:邊較多